
APPROVED FOR

1... PUBLIC DISTRIBUTION

MASSACHUSETTS INTITUTE OF TECHNOLOGY D T IC VLSI PUBLICATIONS

ELECT&
VLSI Memo No. 89-571 JAN 17 1990
October 1989

Irredundant Sequential Machines Via Optimal Logic Synthesis

NSrinivas Devadas, Hi-Keung Tony Ma, A. Richard Newton, and Alberto Sangiovanni-
S Vincentelli

S Abstract

It is well known that optimal logic synthesis can ensure fully testable combinational logic

designs. In this paper we show that optimal sequential logic synthesis can produce
irredundant, fully testable finite state machines. Test generation algorithms can be used to
remove all the redundancies in sequential machines resulting in a fully testable design.
However, this method may require exorbitant amounts of CPU time. The optimal
synthesis procedure presented in this paper represents a more efficient approach to achieve
100% testability.

Synthesizing a sequential circuit from a State Transition Graph description involves the
steps of state minimization, state assignment and logic optimization. Previous approaches
to producing fully and easily testable sequential circuits have involved the use of extra logic
and constraints on state assignment and logic optimization. In this paper we show that
100% testability can be ensured without the addition of extra logic and without constraints on
the state assignment and logic optimization. Unlike previous synthesis approaches to
ensuring fully testable machines, there is no area/performance penalty associated with this
approach. This technique can be used in conjunction with previous approaches to ensure
that the synthesized machine is easily testable. (/ j)

Given a State Transition Graph specification, a logic-level automaton that is fully testable
for all single stuck-at faults in the combinational logic without access to the memory elements
is synthesized. This procedure represents an alternative to a Scan Design methodology
without the usual area and performance penalty associated with the latter method.

* 90 01 16 147
1iaosystns Massachusetts Cambddge Roam 39421
Technology Inasilu Massachusetts Telephone
Labonaodes of Technology 02139 - (617) 2530292I

Accesiot) For

NTiS CFA&I 4
DTIC TAB 0

J istlf if ut,,.,

By
O~stfibujtio I

Av ciltbihty Codes

--", Dst I
14- 7/. ,tt d

Acknowledgements

This research was supported in part by the Semiconductor Research Corporation, the
Defense Advanced Research Projects Agency under contract N00014-87-K-0825, and a
grant from AT & T Bell Laboratories.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Ma, Ncwton, and Sangiovanni-Vincentelli: Department of Electrical Engineering and

Computer Science, University of California, Berkeley, CA 94720.

Copyright 0 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Technology Laboratories,
Room 39-321, MIT, Cambridge, MA 02139; (617) 253-0292.

Irredundant Sequential Machines Via Optimal Logic Synthesis

Srinivas Devadas* Hi-Keung Tony ha.

A. Richard Newton and Alberto Sangiovanni-Viucentelli

Department of Electrical Engiueeing and Computer Sciences
University of California. Berkeley

Abstract optimal sequential logic synthesis can produce fallv testable non-
scan finite state machines. Test generation algorithms can be used

It is well known that optimal logic synthesis can ensure fully to remove all the redundancies in sequential machines resulting in
testable combinational logic designs. In this paper. we show that fuily testable designs. However. in general. this method requires
optimal sequential logic synthesis can produce irreduudant, fully exorbitant amounts of CPU time. The optimal synthesis proce-
testable finite state machines. Test generation algorithms can be dure presented in this paper represents a more efficient approach
used to remove all the redundancies in sequential machines result- to achieve 100% testability.
ing in a filly testable design. However. this method may require Synthesizing a sequential circuit from a State Transition Graph
exorbitant amounts of CPU time. The optimal synthesis proce- description involves the steps of state minimization. state assigii-
dure presented in this paper represents a more efficient approach ment and logic optimization. Previous approaches (e.g. IS]) to
to achieve 100VX* testability, producing fully and easily testable sequential circuits have en-

Synthesizing a sequential circuit from a State Transition Graph tailed the use of extra logic and constraints on state assignient
description involves the steps of state minimization. state assign- and logic optimization. In this paper. we show that 1007 testabil-
ment and logic optimization. Previous approaches to producing it- can be ensured without the addition of extra logic and uthout
fully and easily testable sequential circuits have involved the use constraitd- on the state assignment and logic optimization. Thi,
of extra logic and constraints on state assignment and logic op- technique can be used in conjunction with previous approache,
timization. In this paper. we show that 100% testability can be to ensure that the s'ynthesized machine is easily testable.
emiurd untout tMe addition of ertra logic and without constraint,, The finite automaton is represented by a State Transition
on the state assignment and logic optimization. Unlike previous Graph. truth table or by an interconnection of gates and flip-
synthesis approaches to ensuring fuUy testable machines. there is flops. The synthesized/re-synthesized logic-level implenjentation
no area/performance penalty associated with this approach. This is guaranteed to be fully testable for all single stuck-at faults in thr
technique can be used in conjunction with previous approaches combinational logic ulitlout access to thc nemnory elements. This
to ensure that the synthesized nachine is easily testable. procedure represent- an alternative to a Scan Design methodol-

Given a State Transition Graph specification. a logic-level au- ogy without the usual area and performance penalty associated
tomaton that is fully testable for all single stuck-at faults in the with the latter method.
combinational logic without access to the ,nemory elements is syn- Basic definitions and terminologies used are given in Section
thesized. This procedure represents an alternative to a Scan De- 2. Various types of redundant faults in sequential circuits are de-
sign niethiodology without the usual area and performance penalty scribed in Section 3. In Section 4. we outline an optimal syithesis
associated with the latter method, procedure of state minimization, state assignment and logic op-

timization that produces a highly testable Moore oi Mealy finite

I Introduction state machine beginning from a State Transition Graph descrip-
tion. Any existing sequentially redundant faults in this machine

Test generation for sequential circuits has long been recognized as are implicitly removed using extended don't care sets in repeated
a difficult task [5]. A popular approach to solving this problem is combinational logic minimization. These don't care sets are de-
to make all the memory elements controllable and observable i.e. rived using techniques that check for state equivalence. We give
Complete Scan Design (9] (I]. Scan Design approaches transform theorems which prove the correctness of these procedures. In Sec-
the sequential testing problem into one of combinational test gen- tion 5. we discuss the effects of redundancy removal on the state
eration which is considerably less difficult. They also remove all encoding of the machine. Preliminary results, which indicate that
sequential redundancies in a circuit, since direct access is provided these procedures are viable for medium-sized circuits. are given
to the memory elements. However. there are situations where the in Section 6.
east in terms of area and performance of Complete Scan Design
is not affordable. Also. the testing time associated with Scan De- 2 Preliminaries
sip is higher than that of a ao-scan design. because values have
to be equentiali srcaned into and out of the memory elements A vwile is a infmbol o ting a ahgl coordinate of the
oue clock cycle at a time. Boolen space (eg. i). A lueW is a v.aiatle o its negation (e.g.

It is well known that optimal logic synthesis can esure fully a or W). A cube is a set C ut literals such that r E C implies
testable combinational logic designs. In this paper, we show that 7 f C (e.g.. {a.6.}r) is a cube. and (e.w) is not a cube). A cube

"Depanrment of EJetricalc Engineerin; and Computer Science. I,.Jw represents the conjunction of its literals. The trivial cubes. writ-
mchiuswit Inssitute of Tecnolog'. Canibridge ten 0 and 1. represent the Boolean functions 0 and I respectively.

01

An expression is a set f of cubes. For example, f{a).{bfl.)) state, with any" input vectoi. the fault is (ldeemed combination-
is an expression consisting of the two cubes {a and (b,r'j. An ally redundant. A sequentially redundant fault is a fault
expessiou represents the disjunction of its cubes. that cannot be detected by any input sequence and is not coubi-

A cube may also be written as a bit vector on a set of variables nationally redundant.
with each bit position representing a distinct variable. The values To detect a fault in a sequential machine, the machine has to be
taken by each bit can be 1. 0 or 2 (don't care). signifying the true placed in a state which can then excite and propagate the effect
form. negated for and non-existence respectively of the variable of the fault to the primary outputs. The first step of reaching the
corresponding to that position. A minterm is a cube with only state in question is called state justification. The second ste},
0 and 1 entries, is called fault excitation-and-propagation.
• A finite state machine is represented by its State Transition An edge in a State Transition Graph of a machine is said to be

Graph (STG), G(I . E. 11"(E)) where V is the set of vertices cor- corrupted by a fault if either the fauout state or output label of
responding to the set of states S. where IISiI = No is the car. this edge is changed because of the existence of the fault. A path
dinality of the set of states of the FSM. an edge joins v, to ri in a State Transition Graph is said to be corrupted if at least one
if there is a primary input that causes the FSM to evolve from edge in the path has been corrupted.
state ri to state r.. and W1(E) is a set of labels attached to each A multiple F-type fault for a line L. (which is the output of
edge. each label carrying the information of the value of the input a gate and not a primary output). in a combinational network
that caused that transition and the values of the primary outputs corresponds to a multiple fault condition on the fanout branchp,
corresponding to that transition. In general. the W(E) labels are of line L. The multiple fault depends on the types of gates that
Boolean expressions. The number of inputs and outputs are de- L feeds into. For example. if a line L, has three fanout branchel
noted N, and N respectively. The input combination and present a. b. c. that feel into AND. OR. AND gates respectively. the,
state corresponding to an edge or set of edges is (i, s), where i the multiple F-tvpe fault fox L1 is a stuck-at-l. b stuck-at-0 and
and s are cubes. The fauin of a state. q is a set of edges and is c stuck-at-1. If the multiple F-type fault for a hue is redundant.
denoted fanin(q). The fanout of a state q is denoted fanout(g). it means that the line (and all its fanout branches) can be bodih
The output and the fanout state of an edge (i. 4) E Eare o((i. s)) removed.
and n((i. -)) E V respectively.

Given .N, inputs to a machine. 2- ' edges with minterm input 3 Origin of Redundant Faults in Sequen-
labels fan out from each state. A STG where the next state
and output labels for every possible transition from every state tial Circuits
are defined corresponds to a completely specified machine.
An incompletely specified machine is one where at least one There are two classes of redundant faults in a seqiei tial cim .
transition edge from some state is not specified. namely. combinationally and sequentially redundant fault Col,.

A starting or initial state is assumed to exist for a machine, also binationally redundant faults (CRFs) are due to the pieserv of

called the reset state. Given a logic-level finite state machine lines/wirehs in the logic circuit that do not contibute to the pli
with X6 latches. 2b possible states exist in the machine. A state mary output or the next state function,. Replacenwit of te-,

which can be reached from the reset state via some input vecto li nes by conitantq will not change the functionality of tle coi':

s.euence is called a valid state in the STG. The input vector national logic in the sequential circuit. CRFs cannot be deteted
sequence is called the justification sequence for that state. A even if all the memory elements of the sequential circuit are made
state for which no justification sequence exists is called an invalid scannable. Sequentially redundant faults (SRFs). on the othci
state. Given a fault F. the State Transition Graph of the machine hand. are related to the temporal characteristics of the sequential
with the fault is denoted Gr. Two states in a State Transition circuit. Although SRFs alter the combinational logic function of
Graph G are equivalent if all possible input sequences when the the circuit and hence the State Transition Graph (STG) repre-
machine is initially in either of the two states produce the same senting the sluential circuit, they cannot be detected without
outpuit response. making some of the latches scannable.

A State Transition Graph G, is said to be isomorphic to an- We now provide a definition of sequentialy redundant fault,.
other State Transition Graph G2 if and only if they are identical 1. An equivalent-SRF is a fault which causes only interchange
except for a renaming of states. and/or creation of equivalent states in the STG of the finite

The fault model assumed is single stuck-at. A finite state state machine.
machine is assumed to be implemented by combinational logic
and feedback registers. Tests are generated for stuck-at faults in 2. An invalid-SRF does not corrupt any fanout edge of a valid
the combinational logic part. state reachable from the reset state.

A primitive gate in a network is prime if none of its iputs can 3. An isomorph-SRF transforms the original machine isomor-
be removed without causing the resulting circuit to be function- phically. i.e. the faulty machine is equivalent to the good
ally dilferet. A gate is irmdudat if its removal causes the machine but with a dilierent encoding. (There exists an iso-
remulting drcuit to be fuactiomafly different. A gate-level circuit orphsm between the riginal nd the faulty machine.)
is said to be prime if all the gates ae prime and irredundant
if aUl the gates we ireduadant. It can be shown that a gate-level We will use an example to illustrate the existence of sequentially
circt is prime and inredudast if and only if it is 100% testable redundant faults.
fr al single stuck-at faults. The State Transition Graph (STG) of a fmite state machine is

We differentiate between two kinds of redundancies in a se- shown in Figure 1. The machine has 5 states and the states
quential circuit. If the effect of the fault cannot be observed at 010 and 110 are equivale at. The logic imp!eniittation of the
the primary outputs or the next state lines, beginning from any combinational part of the machine is shown in Figure 2. The

7

100 010 100 010

0/1 0/1
00/111 001

Figure 1: Original Finite State Machine Fgr :Fut S1wt nioop-R

fault tel stuck-at.O (s-a-0) changes the original STG to the one
shown in Figure 3. The corrupted edge is sh own v-ia a dotted line.

IN W1Since 010 and 110 are equiialent states in the original STG. the
fault tel s-a-U only canse" an interchange of two equivalent state'
of the machine and is therefore sequentially redundant. The fault

P1 -NI u-2 s-a-i changes the machine to the one shown in Figure 4. The
fault creates an extra state 111. that was originallY an invalid

N2 state which is equivalent to the true state 110. Therefore the

P2 fault it2 is also sequentially redundant. The corrupted edge i

N3shown in (lotted lines and the added edges shown in dashed line,-.

Pr 7,If the dietection of a fault in the combinational logic retlinie,

the machine to be b~rouight to an invalid state (e.g. 101). then,
1W OUT the fault is an invalid-SR F. An iromorph-SRF waY change the

Pi original machine to the one shown in Figure 5. Note that the
fault y inachnne representq an eqltivalent machine with a d;fferet

w2 enlcodig. The encodinig, for the states 000 and] 001 in thes oigidr

wachiine have been Awapped. Anl isoniorpliisi exist-; between this

Figure 2: Combinational Logic of FSMorgnladtefuy cht.

Theorem 3.1 : A vvyliuLait fault in a fite sate ,aachtur is~
either a CRF or aii equvaaet-SRF or an tioaaid-SRF o? as
icottiorph-SRF.

Oil
1f1 Proof(by contra diction): Assume a fault. F. ix a rediudant failt

100 IN010 hut not a CRF or equivalent-SlIF or invalid-SRiF or isomorlib-
Oil SIIF. Since F is not a CRF or an invalid-SRF. there must be

01 110 c/0 00 an input seqjuence. begiuning froiun the reset state, that will bring
0/1 the machine to a state that can excite the fault and propagate

110 Omits effect at least to sonie of the next state lines. Since F is
not asm etjtnvalent-SItF oi an isonlorlph-SRF. the fault effect on

1/1 the next state lies will not cause an interchange or creation of
equivalent states or anl isoinorpluc mapping, of states. This; means

Figure 3: Faulty FSM with wl s-a-fl the good state and the faulty state can be differentiated by a
propagation sequence. i.e. the fault effect is propagated to the
primary outputs. which means that the fault is testable. Q.E.D.

___________________________ Theorem 3.1 guaratees that a fully testable finite state ma-
on 7chine results if we ensure that none of these 4 kinds of redundan-

100 cies described above exist in the synuthesized machine. Steps in
an our synthesis procedure are designed to achieve this goal.

4 Irredundant Fully Testable Sequential
110 INMachines

A genseral model for a Mlealy bite state machine is show in
Figure G. It is realised liv a rsmibinational logic block, which im-

Figure 4: Faulty FSMf with w2 s-a-I plemnts the output and next state logic functions, andi feedback
registers. The Moore machine can be viewerd as a special ca"e of

3

are used as don't cares during the minimization. The 'um-
ber of inputs to the network will be N, + Nb and the nuher

PI PO of outputs will be N. + Nt. Prime and irredundat two-level
networks can be produced using two-level logic mininizers

NSL + OL like ESPRESSO (3]. Prime and irredundant multi-level net-
works can be synthesized using techniques like those in 12].
The multi-level network has to be irredluidant for a certaiin
class of multiple stuck-at faults as well (see Lemina 4.2).

PS / ____ NS We will have N6 latches in the synthesized sequential machine

(denoted S,') and 2N valid and invalid states in the completely

FF specified State Transition Graph (denoted G).

4.2 Correctness of Procedure

We can prove that the sequential machine synthesized by the pro-

Figure 6: General Sequential Machine Model cedure of the previous section is irredundant for all CRFs. invalid-
SRFs and isomorph-SRFs.

The following theorem follows from the definition of state min-
a Mealy machine, where the outputs depend only on the present imality. It is given in [11].
state of the machine.

We first describe the optimal synthesis procedure in Section 4.1. Theorem 4.1 : Gitlen a state minimiized (reduced) inachia .11
In Section 4.2. we prove that the resulting machine has no CRFs, with N, state., no machine with feuer states canz realize t/e .,ayes,

invalid-SRFs or isomorph-SRFs. Experimental results indicate terninal behavior. Also. any tmchite with the same tnniib.r of
that the machine has very few redundancies. In Section 4.3, we states that rea/ize. the sane behavior has to be il or isomot7)lCu

present a modified synthesis procedure using extended don't care to AM.
sets in repeated combinational logc minimization which ensures
that eqivaleut-SRFs do not exist in the synthesized machine. We now show that stuck-at faults cannot produce a faulty State
The synthesized machine is thus made fully testable. In Section Transition Graph that is isomorphic to the true State Transitioni
4.4. we briefly discuss how finite automata represented at the Graph if the combinational logic implementing the next state al d

truth table or at the logic-level can be made fully testable. output logic functions is two-level. prime and irredujadant. l,.,-

worphic faulty and true State Transition Graphs iuiply that the

4.1 The Synthesis Procedure fault has no other effect than interchanging the codes of the t atc,
of the machine.

The procedure consists of the steps of state minimization, state The proof of this lemma can be found in Appendix A.
assignument and comibinational logic optimization. These steps are
described io the sequel. Lemma 4.1 : tucl- t Ualt S te prnary input (PI. licaoY

output iPO). pree seate (Pe) at d next state (N) line.- canot

1. State Minimization: Given at original State Transition produce a faulty State Trtnsititon Graph GF" that i.s i.somwrphtc to
Graph specification GO we obtain a state minimum repre- G.
sentation. G"'. using algorithms similar to those proposed

in [141. G! has X, valid states and satisfies the property Definition 4.1 : A multi-leel network is inversion-parity in-
that no two states are equivalent. State minimization for variant if for any fault in the netuork. other than on the p,-iiir.
completely specified State Transiticu Graphs can be accom- input ine.s, the parity of iiwrsions is the sane (either odi or

plished in 0(Nloj(N)) time where X is the number of states even) for all paths to the primari outputs.
in the machine, but is NP-complete for incompletely specified

machines. Note that any two-level network is inversion-parity invariant.
Also, networks that are synthesized by algebraic factorizationa

2. State Assignment: We encode the states in CU, namely from two-level networks are also inversion-parity invariant.
Q. The number of encoding bits N can be arbitrarily large
(Nb > 1o9g(IQiI)). State assigumen algorithms like those Theorem 4.2 : lIthe tuo-letel comnbinatimial circuit implement.

in 1131 and 17) can be ned. which find a state assignment iV the net state and output logic functions is prime and irreduna-
that heuristically ainizes the ar& of the combinational det, then only jt F in the cirwt cannot produce a GF that is

network after optimization. However, the state assignment isomorphic to G. Also. if a prime and irredwudaut msuti-Leel ci'-
algorithm may have to spotre a certain nuber of pauible cost w qthakeiaed nh tha it is iserios-perity saiwraunt. then
state 4mignments in order to ensure a locally optimal solution ow /ask F n the circuit cansot produce a GF that is isomorphi.

(see Definition 4.2). to G.

3. Combhatioma Logic Optimisation: Given the encoded Prof: By Lemma 4.1, we need not consider faults oa the PI

maeine, which is now a combinational logic specification, we and PS lines. In a two-level network, faults on the intermediate
.sytbesize a prime sad irredundant combinational logic net- lines and outputs, have the property that they either produce

work which implements both the next state logic and output a D or aV at the outputs of the network. smifmnIl for all test

logic functions. The transitions from the unused state codes, vectors that detect the fault. Isomorphism implies an interchange

4

of codes of multiple states. Without loss of generality. assume a Definition 4.2 : A state assignment of G1 ts deemed to be lo-
two-way swap. between the codes of qj. Q E G to produce GF cally optimal with iespect to a subset of states Q1 E G"J . if

isomorphic to G. An edge fI exists from some state 31 that goes interchangung the codes of q E Q, does not produce. after optt-
to 2 in GF instead of 91 in G. Similarly. an edge f2 from some nmuation. a logic inpLementatwn that .s ezactly the same as the
state sl. that goes to qj in GF instead of q2 in G exists. In the previous one. ezept with one less literal.. combinational sense. if e produces a D at some next state line
where q, and q2 diffe'. f 2 has to produce a V at that line. This The state assignment is locally rather than globally optimal in
is not possible in a two-level network for faults on intermediate the sense that interchanging the code of q, E Qj with q, J Qz
lines and/or outputs. Therefore. isomorphism cannot occui. could produce a bettei logic implementation. In a multi-level

The same argument holds for a inversion-parity invariant, prime implementation. if there exist states in G t ' that do not satisfy
and irredundant. multi-level network. Q.E.D. the condition of Theorem 4.3. then in order to ensure that a

the faults in the i redundant fault does not cause isomorphism. the state assignuwent
I a general multi-level network, however, as a t any of G"' has to be oall optimal, with respect to interchaunging the

termediate lines may produce both a D as well as a at anycodes of these states. For a two-level implementation. any state
particular output. due to reconvergent fanout paths with differ- aode is states. oria thee l tatin G

ing numbers of inversions. The arguments of Theorem 4.2 do not assignment is locally optimal. with respect to a/lstates in G".
hold. when Boolean operations are used in multi-level combina- Theorem 4.4 If G" contains ?-" taahd states where N6 i4 V/i
tional logic synthesis. uher o .L in GA1 SAI fi ly testable. i there ad

The proof of the following lemma can be fond in Appendix number of latces in S4aa

B. A multi-level network can be m. -o prime and irredundant for irredundant combinatwnal network is implemnoted in two-lew 1

multiple stuck-at faults via the procedure of (2]. fo~n. or if a locally optimal state assignment has been foud, as
per Definition 4.2. across all states that do not satisfy thMe cond;.

Lemma 4.2 . If a prime and irredundant multi-level network tton of Theorein 4.3.
C. with Pim outputs and asserting all 2" output combination,, is
irreduvndant for mdtiple F-type fault for each linte in the network Pruof: No fault in the nachine can result in an increase in thp
that is tMe output of a gate anid not a primary output. then for number of states. since the true machine has the maximuim possi.
any sitagi stuck-at fault. F. in C. there will ezrit an inptt vector ble number of states. nael ,v 2'-". Since G" is reduced. we know
pair (i. i2) such that i, is a test vector for the fault and i2 is that no machine with fewer than 2'\ 1 states can reaLze the be-
not. and it produces the same output 1 CF as i2 does in C. havior of G"1 . All faults are combinatioually irredmndant. siii(,

the combiiiation ial logic is prime anLd iledtidant . Foi a coin

Using Lemma 4.2. we cani prove the following theorem, that nationally iiredu],dtmn fault F to be sequentially redundant. i!,,,
restricts the occurrence of isomorphisimi in sequential machines. faultY machine GF has to be isomorl)hic to the tine machanw G,
implemented by prime and irredundant multi-level networks that 3y Theorem 4 2 this iq not possible in a two-l,,vel iplen,inIA
are also irredundant for multiple F-type faults in the netwoik. Q tion. In a mulw-level implementation, if GF iq isomorphic to G.
denotes the set of states in ". the sets of states satisfying the condition of Thaeoiei 4.3 rana',

be involved in th., isotuorphldstm. If isouaorphisni o %- iv 1k, F.
Theorem 4.3 . If a set of states Qi E Q ts such that each state it has to involve a set of states. Qj. not satisfying the condition
in Q I has the property that its fantout edges assert distinct outputs of Theorem 4.3. The isomorphism produces a Cr equivalent to
firon all other states in Q or has fanout next states it Q - Q1. G. with a better implementation (after optimization) than that
which are distinct froim the fatotat states of all other states in of G (with at least one less line). However. this contradicts flip
Q. or possesses di.tinct combitatiots of outputs aid fanout ,ezt fact that the initial state assignment for G"' that produced G is
states. thea a fault cannot produce an isomorphic imachine causing locally ol)timal under the exchange(s) of the codes of states in Q j.
ondy interchange of states within Qj. Therefore. S1 is fly testable. Q.E.D.

Proof: We will first prove the case of IQ II = 2 and where fanout The above theorem is quite a strong result. Given a State Trait-
edges from state s, assert a set of distinct outputs 01 and fanout sition Graph G t . if extra states can be added to G"J such that
edges from the second state s2 assert a set of distinct outputs the resulting graph G"' is reduced and has 2" states, then the
01. Assume there exists a fault F that produces an isomorphism synthesized machine SA1 ' is guaranteed to be fully testable. pro.
between these states. In the isomorph GF. fanout edges from s, vided the state assignment is locally optimal. Of course. adding

(s,) will assert 02 (O). However. by Lemma 4.2. an uncorrupted the extra states and edges to GA' constitutes an area overhead. If
edge asserting some o E 01 or o E 02 has to exist in GF. This GC' has less than 2'& states, the unused state codes can be used
edge can only come from s, or 82. respectively. This means that as don't care states to nmiumize the combinational specification.
in the faulty machine, either at or s2 asserts outputs from both 01 The proof of this lennma can be found in Appendix C.
and O. implying that GF is not isomorphic to G. The argument
is easily generalized to IIQIll > 2. Lemma 4.3 At uAali state in the State Traitimo, Graph is

A sinilar argument can be made for states $1, 82 with distinct never required to detect a /uk in S.AI
next state fanouts or distinct combinations of outputs and next
state fanouts. Q.E.D. We now use the preceding results to prme the partial irredun-

Thus. a sequential machine with a G" where all states possess dancy theorem for machines wh G It has N. < 2"'- states.
distinct combinations of outputs and fanout states cannot have
faults that cause isomorphism, whether the combinational logic Theorem 4.6 : The sepsetial uuachine S"' produced by the n,,.
is implemented in two-level or general multi-level form. thesis procedure mitay cntain onLy equitmdlet.SRFs.

e5

Proof: Bv Lemmla 4.3. no invalid-SRFs can exist. BY Theorem used as don't cares and G' is made prime and irredundaxit

4.2. if S~i is implemented as a two-let-el network, no isomorpli. under this newv don't care set to produce C'.
SRFs can exist. If S)" is implemented as a multi-level network,
then a locally optimal state assignment as per Definition 4.2, S. If G' = G", exit. Else G .- G". go to Step 2.
across all states that do not satisfy the condition of Theorem
4.3. is found. This guarantees that no' oop.R~ il~d In the first iteration, there nkil not be valid states ri - 11 thatno ioworh-SRs wil ex~t. are equivalent to any t'l. since we begin With a reduced machitip
SJ1 does not contain any' CRFs. Therefore. by Theorem 3.1. oul - However, after Step 3 above. some invalid state-, that are eqjuva-
equivalent-SIRFs can exist. QE. D. lent to r, maY become valid.

4.3 Eliminating Redundancies Via Extended Don't Theorem 4.6 : The prooedure above converges-. awd the restiltoj
Care Sets machine after conivenice W1 wot have anY sMle* equ111Civale-

In this section. we show how the testability of the synthesized ma- SAFs. itsvaidSRFs or itouorph.-SRFs.
cinue S" can be increased by removing possible equivalent- SRFs
through succeeding logic minimization steps, Whtiout ezplWictII Proof: The procedure converges when succeeding logic whmmmmza-
identifying these redundancielt. Redundancies are identified and tions hav-e produced the same result. Each logic wixnuizatioi,
removed implicitly v-ia the use of extended don't care ses starts with the result of the previous logic mintimization. Ad-

A simple equivalent-SRF was illustrated in Figure 4 (Section 3). ditional don't cares are provided. We are guaranteed that the
Wie hav-e a situation where an invalid state q has identical fanout overall cost function (e.g. the number oflhues in the network I has
and hence is equivalent to some valid state v1. An edge from t,2 a finite decrease if the logic function is altered. Since the cost

to rl is% corrupted to go to q. F only' corrupts one edge in the function is bounded from below, the seqjuence of logic mininiz;,_

State Transition Graph and propagates only one time-frame. In tions must eventually converge. andl on the last call. returni ax,

the general case, a equivalent-SRF can propagate multiple time- unchanged network. it. No isomiorp~h-SRlFs will exist in the primie

frant~eS. whenl the invalid state q is equivalent to the true valid and irredundaut network it Iny Theorem 4.2 and Theoren,43

state 'x - but does not have identical fanlout. Since the invalid states have beeni used am (lon't cares to pxioltc',

These redundancies are likely to occur. esp)ecially if a large ij and the network is, unichanged since then (even though adiL

number of uused state codes exist. These redundancies occur tional minimizations may hav-e been performed). no inlvalid-Sill'

because current state assignmxent algorithms do not use thle free- Cali exist.

doxin of state slitting (Section 5)l. -o as to obtainl all optimlal so- Fixiallv'. usinig the don't (SIC sets corresploxidixe to ti,. e~li

lution. It is very difficult to extend state assignmuent algorithms lent states. euresp that for each fault F thiexp wvill exist ;ia.-

in this slirectioin and hence we ensure irreduindancy by specifyN- one corrupted edge that goes to a state. F. that is Yw? eqtiuvalcnt

ing an extended don't care set in a repeated logic mnimization to the true next state. q. in the true macine G. regardless of

procedure. Whether the (IF is invalid or valid. 11 is Unchanged since thle 1jse of
the invalid states, as don't cares, so an edge fanning out of a valid

1. Sidle 05Sgigxlnent and logic optimization are performed as state has, to exist with this property. qr E GF hlas to liecoawi

before. with logic optimization using the invalid states as equivalent to I E G fox F to be redundant. but that wouild no'ai,

donit cares. that F is not a simple esjuivalent-SRF. Therefore. F is testalel
or not a simple equivalent-SliF. Q. E.D.

2. Given the prime and irredundaut logic network, the State
Transition Graph. G. corresponding to the network is ex- More complicatedl equnivalent-SIRFs may exist, though expen.

tracted. All invalid states ir E G that are equivalent to valid mental evidence inthcates that this is extrenmelY rare. lIn fact, we-

states I- E G are found. It should be noted that G is a cow- have yet to encounter a single case of an eqtnvalent-SRF that is

pletely specified combinational logic function, corresponding not of the form of the SRF of Figure 4. These redundancies cox.

to an encoded SaeTastoGrp.respond to the case, where qF E G is not equivalent to q E G
Stae Tanstio Grph.but qF E Cr becomes equivalent to q E G. making F redundlant.

3. Given a valid state I-,. valid states r2 v*3.. v-j' that are equiv- A larger set of don't cares can ensure that these equivalent-SIRFs
alent to r, and invalid states i-I it-2 . .. it,- that are equiva- do not occur in the machine. The synthesis procedure slescrihedi
lent to I's. then the fanini of I,, is re-specified as niffanin(v,)) above is unchanged except for introducing an additional don't

= DC(ri. 1-2. .. IrL.II- it- '2. .. WKj). DC() implies that any care set in Step 3 where G' is produced. as; described below.
(but at least one) of the enclosed state entries can be used. Step 3b: Given a state q2 that is not equivalent to a valid state
In practice. if t', and some or all of the it'k, 1 !5 k < K can 91. thle set ofi input combinations 'dqj w~Iae found which make
be merged into a single cube. c. then every occurrence of v'i this pair not equivalent. If 92 were equivalent to qi then it,, = o.
in the next state field of G is replaced by c. I with this The don't care specification is n(fnniti(9 1) DC(ql. 91. with
extended don't care set is made prime and irredundant via a constraint ass a subset of fanout edges of tj if q2 is picked rather
logic mini-mation to produce G'. This may make a previ- than qj. The constraint for a single cycle propagation is that

ousl inali stte ad.o(i,,dqs. 92), 92) = o(ine(qj. ft), VI) A ion(va .).) = pro..t,(q,. - 9, q
4. G" may have some invalid sttes, which could be different

fromn the invalid staes in G. These invalid state codes are This set of dust came and meodated constraintsam fo Iundl

'if Ihe codes cannot be merpted into a siagle cube, we hav'e a ola for the differet state pairst that arc not equivalent. Optimal use
relation (41 corresponding to the permiiWie next states of the edge ad the of these don't cares and assoilated coustrainits, generalized to
combinatioal logic has to be optimized with respect to this Boolean relation. multiple-cycle propagation. eurvires full testtability.

6

Theorem 4.7 Using the additional dot't care set in the syn- 5 Effect of Redundancy Removal via
thesis proce dure uill result in a Mlly testable inachine. Logic Minimization on State Encoding
Proof: By Theorem 4.6. no simple equivalent-SRFs, invalid-SRFs
or isomorph-SRFs will exist in the machine. Using the additional I a combinationally redundant line is removed from a logic net-

* donit cares will ensure that there will always be an edge from a work (i.e. replaced with a 0 or a 1). network functionality remains
valid state that is corrupted to qF instead of q such that qF E unchanged. Similarly, when a sequentially redundant but conbi-
G #q E G and F E GF 31 q E G. Therefore. GF and G can nationally irredundant line is removed from a sequential machine.
be differentiated by distinguishing q F and q and F is testable. the terminal behavior of the machine remains unchanged. How-
Q.E.D. ever. the State Transition Graph of the machine, and the state

The enhanced procedure will remove all equivaent-SRFs in the encoding are affected by redundancy removal via repeated logic

machine which has been synthesized as described in the previous mimization.
section. In practice. only the sinple don't cares of Step 3 suffice Two things may happen during redundancy removal:

to ensure full testability, allowing a locally optimal solution with 1. A state may be added to the State Transition Graph. whidh
no redundancies to be reached: the more complicated don't cares is equivalent to some other valid state. An edge is redirected
of Step Sb are 1ot required. That is fortunate, since current logic from some valid state to this originally invalid state.
optimization programs are quite restricted in the specification and
optimal usage of don't cares. 2. A valid state may be replaced by an originally invalid state.

The procedure is quite CPU-intensive since repeated combina- In effect, the encoding of a symbolic state is changed.
tional logic minimizations have to be performed. Experimental The occurrence of the first effect is due to the fact that state
results (Section 6) indicate that the machine prior to using the assignment is perforned on a state minimized Graph. It is wel
extended don't care sets is highly testable, and in some cases, known [10] that state splitting may be required for an optial
fully testable. Removing the few redundancies can be a--oi- state assignment. Unfortunately. the state assignment problem
plished using reasonable amounts of CPU time. The fact that is difficult enough. without adding the extra degree of fieedo
a network has to repeatedly be made prime and irredundant in of being able to split states. The faulty, but equivalent. State
order to ensure full testability for a sequential circuit. indicates Graph corresponds to a -better- state assignment with (at least)
that synthesizing irredundanit sequential circuits is more difficult one state split into two (or more) components.
than synthesizing irredundant combinational circuits. The occurrence of the second effect is due to a state assigu-

ment that is not locally optimal for the reduced State Graph. eveni
4.4 Synthesis from Logic-Level Descriptions without tbp addition of extra states. As mentioned in Section 4.2.

In this section. we describe how complete o partial re.synthesis of when a machine ha.s a two-level combinational logic imieineiit;,-

logic-level circuits can be performed so as to ensure irredundant tiou. any state assignment is locally optimal with respect to all

se(quential machines. Given a combinational specification of a the used state codes. Howevei. the state assignment may be sail-

circuit in the form of a truth table. i.e. a previously encoded finite optimal when considering the invalid or unused state coder. III
state machine, the foliowing steps are performed in re-syrithesis. the multi-level case too. a state assignnment that is locally optimal

The combinational specification has .*, + Y6 inputs and N' + Nb under the valid (used) state codes may be sub-optimal when con-

outputs. where Nb is the number of encoding bits used (latches) sidering the invalid (unused) state codes. The replacement of a

in the state assignment process c state code by an unused state code results in a -better- machine.
State assignment techniques (e.g. [7] 113]) do not take state

1. The combinational specification if made disjoint in the splitting into account in their attempt to find locally or globalv
present state field (the last At inputs). A cube entry in the optimal solutions. it our experience, the occurrence of the first ef.
field is identical to another cube entry or does not intersect fect is much more frequent. If an optimal state assignment can be
it. A two-level cover can be made disjoint using the disjoint found exploiting the freedom of state splitting, then the resulting
SHARP operation in [3]. logic implementation will be fully testable. Repeated logic rain-

2. The specification is now treated as a State Transition Table. imization. as described in Section 4.3. has the effect of changing

with each distinct entry in the present state and next state a sub-optimal state encoding to a locally optimal encoding that

field representing a distinct state. If some states cannot be corresponds to a fully testable machine.

reached from the reset state (invalid states), they are deleted
from the description. The State Table is now state mini- 6 Results
mized. Some states (represented by cubes or minterms) may
be removed because of being equivalent to other states. In this section, we present some preliminary* results obtained ts-

3. The encoded State Transition Table represents a combina- ing the synthesis procedures described in Section 4. Intensive
.Thenoded tteTasitiothtn Tabe repre ad ombia- optimization is necessary to obtain fully testable designs. If this

tional logic specification that can be made prime ad i'e- optimization can be carried out. then the rnthesied machine
dundant. A fully testable machine can be synthesized via will occupy minimal wea. There is no aea/performance over-
the procedures of Section 4.2 and 4.3. head associae with this procedure. Howee, the CPU time

The re-s.nthesis procedure can be extended to begin from a rquirements have to be evaluated.
loic-lvel description. In this case. the State Transution Graph ledundancies can be explicitly removd via the we f test pat-
of the machine is extracted using the efficient cube-enumeration tern generation algorithms, to produce fully testable sequential
techniques presented in (6]. Given this (encoded) State Transition circuits. However. rednudant lines cotelsponding to redundaut
Graph. Steps 1-3 described above are carried out as before. stuck-at faults can only be removed (replaced with a o or a 1)

C

_____I II I__ 1 I i II-,

IEX #inp #°ut i#states i # EXs #tItl al Io P et'r
exl 2 2 6 24 1 time tine seq fault time time
ex2 2 1 13 57 exl 3 23 97.92 0.5r 2.0s "19 2.08 1.Is 2. s
bbara 4 2 45 ex2 5 35 98.15 2.2s 41.8s 22 1.85 6.ls
bbsse 7 7 13 55 bbara 3 56 100.0 1.2s 104.8s 42 0.0 0.0,
s 8 6 20 110 bbsse 4 91 100.0 2.1s 3.2w 4G. 0.0 0.0s 0"'.
planet 7 19 48 118 sl 5 105 99.79 5.5s 303, 74 021 4t0, 303,
dfile 2 1 24 96 planet G 193 100.0 10.5s 141.8s 80 0.0 U.0, 0. 0
st.r 9 10 30 165 dfile 6 77 97.80 6.2s 331.8s 62 2.20 41.8, > 1h
keyb 7 2 19 170 styr 5 367 100.0 80.4f. 42.1w 105 0.0 0.0 0.0,
scf 27 54 128 168 keyb 5 146 9.65 29.5s 21.2m 101 1.35 1.2w > Ih

scf 8 402 100.0 121.4s 82.2w 136 0.0 0tt, 0.0,

Table 1: Statistics of Benchmark Examples
Table 2: Synthesis Procedure Results

one at a time. Furthermore. removing a redundant line may in-
troduce new redundancies and so all faults have to be checked for
redundancy on each removal. We compare these two techniques 'EX I s.e. I #logic I 1. o. fault TPG 1
to the synthesis of irredundant sequential circuits. I I t mi. time I cov. I time

We chose some examples in the MCNC 1987 Logic Syuthe- exI 0.5s 1 0.5s 100.0 2.1s
sis Workshop as test cases. whose statistics are given in Table ex2 6.5 7 22.4s 100.0 40.Gs
1. Beginning from a State Transition Graph description. G. the sl 1.0s 1 6.1s 100.0 298.2s
following steps were performed in the synthesis procedure. dfile 10.2s 3 25.5s 100.0 747.7s

1. State Minimization: The machines were state minimized. keb 14.Gs 2 27.8s 100.0 21.Gnw

2. State Assignment: Binary codes were assigned to the
states in G using the program KISS 1131. The encoding length Table 3: Results using Extended Don't Care Sets in Sv'n1theji

in some cases was greater than the minimum required. The
codes were all minterms. and some minterms were not used. The number of test sequences generated for each example i-
The combinational logic specification. a truth table, after en- comparable to the nuiber of single test vectors generated via a
coding is denoted T. Complete Scan Design approach. However. each test se trn-,,

3. Logic Optimization: T. with all the unused state codes has multiple test vectors (between 1-10) that have to be applid

specified as dont cares. was optimized using ESPRESSO. to the PI lies. In the Scan Design case. each teqt vectoi ie(ll e,

and algebraically factored to produce a multi-level logic net- multiple cock cycle, to be applied.

work C. C was prime and irreduudant. The examples of Table 2 with < 100V fault coverage were le-
synthesized using the extended don't care set as described in Sv -

Tests were generated for the resulting sequential machine 1 tion 4.3. The CPU time to check for equivalence between invalid
whose combinational logic is implemented by C. Test generation and valid states (s.e. time). number of logic minimizations (#logir
was accomplished using the program STALLION [12). The num- mini.). CPU time spent in logic minimization (L.o. time). the fi-
ber of encoding bits used in state assignment (#lat). the number ual fault coverage (fault coy.) using STALLION and the test
of gates in C (#gate) and the fault coverage obtained (fault coy.) generation time (TPG time) are indicated in Table 3. The CPU
by STALLION are given in Table 2. The CPU times for logic opti- time required for the state equivalence checks and the extra logic
mization (I.o. time). test generation (TPG time) and the number minimization steps are less than sequential test generation and
of test squences (test seq.) generated are also given. All the un- redundancy removal times (Table 2). indicating that the optimal
detected faults were checked for redundancy using algorithms in synthesis procedure is more efficient than an explicit redundancy
STALLION. The number of redundant faults (%red. fault) and identification method. Using the simple don't cares (Step 3 in
the CPU time expended during redundancy identification (ri. Section 4.3) resulted in fully testable designs in all cases. We have
time) and redundancy removal (r.r. time) are given in Table 2. yet to find an example where this is not the case.
The CPU times for state assignment and the initial state mini-
mizatioa were negligible and are not given. In the tables, s stands
for CPU secwuds on a VAX 11/8650 and m for CPU minutes. For 7 Conclusions
all the cases, the machine produced is higly testable. The larger
eamples. scf and planet which have significatly more outputs We have described a synthesis procedure that produces an opti-
than latches are fully testable. mized, fully testable logic implementation of a sequential machine

The redundancy identiicatien times in Table 2 represent the frna a State fanstion Graph description of the machine. Dur-
CPU times required to .~divitly identify redundant lines in the lag sMthesis, possible redundaies in the machine are implicitly
give. circuit. Exlcitly removing these redundancies in order to eliminated usng state equivaleace cbecking and combinational
obtain a fully testable circuits requires considerably more CPU logic minimization. No direct access to the memory elements is
time as indicated in Table 2 (r.r. time). This method is only required.
feasible for small examples. The optimal synthesis procedure described involves the steps

8

of state minimization, state assignment and logic optimization. plementing G. The circuit is levelized from the primary outputs
It is applicable to Moore or Mealy finite state machines. This to the primary inputs. Gates generating primary' outputs are as-
procedure has no associated area/performance overhead unlike signed level 0 and a gate that drives gates with levels 1,. 12... /,,
Scan Design methodologies. It can be used in conjunction with has a level equal to MIN(,) + 1. The gates at level j are

* 1 previous synthesis approaches to ensure easily testable sequen- g,,. gj2 ... g ,. The outputs of these gates constitute a set of. tial machines. In this case. test sequences which detect all sin- A, variables 1T(j)(i). 1 < i < N,. The combination, of IV(j)
gle stuck-at faults in the sequential machine can be obtained via that are caused by some primary" ilput combination are denoted
combinational test generation and depth-first search on the State 1'(j)C4 and the combinations that never appear are denoted
Transition Graph. JV(j)DC.

Ongoing work includes the generalization of these methods to Without loss of generality, consider the s-a-0 and s-a-1 faults
arbitrary interconnections of finite state machines. on I11'(1)(1). Some ti-1 E bl'(l)cA has to detect the s-a-0 fault

and some itv E Il'(l)CA has to detect the s-a-i fault. Obvi-
8 Acknowledgements ously. ittl[] = 1 and i, 2 [1] = 0. If for any ir- E /l"(1

A

that detects the s-a-0 fault, there is a i'3 E I(1)
C

4 such that

The interesting discussions with Kurt Keutzer and Robert Bray- it 3 1] = 0, it,3[i] = iv|[i]. 2 < i < j,. then we have a comple-

ton on sequential circuit optimization and testability are ac- mentary PI vector pair (it. '3) corresponding to (ir,. *t'3) with

kuowledged. This work was supported in part by the Semicon- it detecting the s-a-0 fault and producing a faulty output equal

ductor Research Corporation. the Defense Advanced Research to the true output of i3 which does not detect the fault. Further-

Projects Agency" under contract N00014-87-K-0825 and a grant more, (i 3. it) will be a complementary PI vector pair for the s-a- I

from AT&T Bell Laboratories. fault.
We then consider the case of 'T'3 E I1"(1)c fo all i, E

APPENDIX IU(1)CA that detect the s-a-0 fault. By the argument above.
if for any it-2 E 1V'(1) C A that detects the s-a-i fault, there is a
it-4 E Il"(1) C'4 such that it(4 [1] = 0. i.4[i] = ir2[i] . 2 < i < N.P

A Proof of Lemma 4.1 then (iu2. i1 4) constitutes a complententary pair for the s-a-I faidt

and(it('4 . i 2) constitutes a complementary pair for the s-a-0 fault.
Proof: Consider a primary" input fault F. Without loss of The last case we need to consider is it 3 E 1'(1) (for all
generality, assume that it is a stuck-at-I fault on the 1st pri- it, E T"(1) C'A that detect the s-a-0 fault and i- 4 E If'(1)fl
mary input line. The effect of this fault is to cause all input for all it2 E 1)' 4 that detect the s-a-i fatdt oil i(.
vectors il such that 4[1] = 0 to become. in effect. il whereilli = ~ji. 2 i N, Sice F is ombua- For RDN i 11 E I1(1)C A

' that dues not detect tile A-a-0 l -i 1
1[]= 1 &&,. iq[i] = it~i,]. 2 < i < N;, Since F is combina- -__,wav__sschta ril= ,.~]- ,.[]

tionally irredundant. there will exist an input vector pair (i-. i2) fault, we have ir- such that i-[] = 17-t!. if-Ili) = iqli]. 2 <

where i[1] = 0. i2[1] = I &- il[i] = i2[i]. 2 < i < N, such that i < N . producing the same output as ti' in the true o faullt%
circuit. We then can represent I"(1)('.4 using 1"'(1)oC as a set

(it. q) 1 1i0. r) I O(i - q) # o(i 2 q) for somue q (Else. it call of cubes. ir, U iu3 . it2 U it 4 .. , itr 0 irj. where the firs hit i

be replaced by i U i2 in the combinatiotal truth table). First. each ctb"e is a dot't care. This nmea t tl e e Ii (1 }((i cabt, h

consider the case where the fanout states are different for it and
il. If in G. n(i 1 . q) = q, and n,('2- q) = q3. then in GF we have bodiiy removed, i.e. the multiple F-type fault coresponding to
1 (i . 9) = 10 2 . -9) = 0. For G F to be equivalent to G. we need 1"(1)(1) is redundant. which is a contradiction. Therefore. a
13) = -- q q G CF t equint to is w need complementary vector pair has to exist for the stuck-at fault, on

asG q2 E Gand0 E G - W3 E G(since there is acor-
rupted and uncorrupted edge from q to q3 in GF). This requires IV(a)(1) ad other/J(1)(A-).

q3 E G E q2 E G. which is a contradiction. The second case A similar argument can be made for the intermediate liues cor-

where the primary outputs of it and i2 are different is simpler. responding to the inputs to the gj,. using the fact that the in-

We have two edges from a state in G that assert different outputs output. fault-free network asserts all distinct 2"' output comnbina-

and go to the sante next state, merging in GF. This means GF tiols. Q.E.D.

cannot be isomorphic to G.
A primary output o exists in GA . if and only if there exists a

pair of edges eI and (2 which assert both values of the output.
0/1. When the machine makes the transition corresponding to Proof: All unused state codes may be used as don't cares during
the edge which asserts the value of the output different from the logic minimization. Invalid states can onl correspond to sone
stuck value. the fault will be detected.loimiiiainInadstesc nycrepndosue

Ifstuckkvaluet faults wil besdentttee unused state code. Since the combinational network is prime and
If all stuck-at faults on present state lines are combinationlly iredundant under this don't care set there always exists a valid

irredundant. for any present state line i, there are two states q1
and q2 whose codes differ in bit i alone. q2 and q, merge in GF state that detects any fault (na provides the initial propagation
due to a fault on pretmt state ine i. Henace, JIG l < JIGII and to the next state lines or primary outputs) that the in-alid state

du oafuto rsetsaeht, ece IFI<uHad detects. Q.E.D.
isonorphism cannot occur.

The argument for the next state line faults is similar to the
argument for the present state line faults. Q.E.D. References

B Proof of Lemma 4.2 i1] V. D. Agarwal. S. K. Jain. and D. Mi. Singer. Automation in
design for testability. In Proc. of Custom Jntegrted Ctrcut

Proof- Consider a prime and irreduudant multi-level circuit in- Confereos. May 1084.

9

12] K. Bartlett. R. K. Braytou. G. D. Hacbtel. R.. Mt. Jacoby.
C. R. Morrison. R. L. Rudell. A. SazgiovaMni-Vinjcenteflb.
and A. Ri. Wang. Multi-level Logic Minimization Using Ins-
plicit Don't Cares. In IEEE Th-iutactiona oil Computer-Aided
Desigii. pages 723-740, June 198S.

[3] R. K. Brayton. G. D. Hacbtel. Curt McMullen, and A.
Saugiovamni-Vincentelli. Logic Minimization Algoritkims for
VLSI Synthestis, hluwer Academic Publishers, 1984.

141 R. K. Brayton and F. Sonieuzi. Boolean Re'lations and the
Incomplete Specification of Logic Networks. In Proc. of VLSI
19. August 1989.

151 11. A. Breuer and A. D. Friedman. Diagnoseis and Reliable
Design of Digital Systems. Computer Science Press, 1976.

161 5. Devadas. H-K. T. Ila. and A. R.. Newton. On the verifi-
cation of sequential machines at differing levels of abstrac-
tion. In IEEE Trunsatasons on Computer-A ided Design,
pages 713-722. June 1988.

[7] S. Devadas. H-K. T. Mla. A. R. Newton. and A. Sangiovanni-
Vincentelli. Mustang: state assignment of finite state ma-
chines targeting multi-level logic implementations. In IEEE
Tvtznsactow onl Comnputer-Aided Design, pages 1290-1300
December 198.

[8] S. De'.adas. H-K. T. Ma. A. R. Newton. and A. Sangiovanui-
Vincentelhi. A Synthesis and Optimization Procedure for
Full ' and EasilyN Testable Sequential Machines. In IEEE
TvyuL'oction.; on Comnputer-A idvd Deqign,. October 1989. to
appeal.

[9] E. B. Eichelberger anld T. W. Williams. A Logic Desigu
Structure for LSI Testability. Ini Proc. 14th Design Automao-
tin Conference. pages 4G2-4GS. June 1977.

110) J1. Harmauis and R. E. Stearns. Somse dangers in the state
reduction of sequential machines. lu Informiation and Con.-
trol. pages 252-260, September 19052.

[11] F. J. Hill and G. R. Peterson. Introduction to Switching
Theory and Logical Design. John Wiley and Sons. 1981.

112] H-K. T. Mla. S. Devadas. A. R. Newton. and A. Sangiovanni-
Vinceutelli. Test generation for sequential circuits. In IEEE
Trawractionse onl Computer-Aied Design, pages 1081-1093,
October 1988.

1131 G. De Aliclseli. Rt. K. Bra ' toll. and A. Sangiovai.
Vinceisteili. Optimal State assignment of Finite State Mla-
chines. In IEEE Truinsactions on Computer-Aided Design.
pages 269-285. July 1985.

114] Md. C. Paull and S. H. Unsger. Minimizing the number
of states in incompletely specified sequential circuits. In
IRE 71tariwactions onl Electronic Comnputers, pages 356-357,
Sept-ember 1959.

10

